Improving Blue and Green Infrastructure to Counteract Increasing Urban Temperatures

by Deniz Korman

Urban areas experience higher temperatures compared to rural areas, and it is likely that this will lead to health risks within urban communities due extreme heat in the future. However, we have the power to minimize this effect by improving the infrastructures of our cities. An effective way to lower urban temperatures is increasing vegetation and water surfaces, which also provides the added benefit of increasing urban biodiversity, and improving air quality. While this known to be a valid strategy, the magnitude of the climate impact that such an improvement will have when applied on a city scale is unknown. Žuvela-Aloise et al. (2016) have modeled the potential of improving green and blue infrastructure within Vienna, and identified the ways in which changes should be applied in order to counteract urban warming as effectively as possible.

Continue reading

Projecting the Frequency of Heat Waves in the 21st Century over the Paris Basin

by Amelia Hamiter

The high mortality of the 2003 heat wave in France, and its particularly severe impact in the Paris basin, has drawn attention to the importance of considering heat wave occurrences of the future. Evaluating heat waves in the Paris region from 1951-2009 and using several climate change and emissions scenarios to model future heat wave possibilities, Lemonsu et al. (2014) predict that the frequency of heat wave occurrences in the target area will increase systematically with time and global warming, and that the durations of these heat waves will grow. Continue reading

The Power of Green Space for Reducing Surface Temperature in Tel Aviv, Israel

by Dan McCabe

One key objective of sustainable urban planning is to limit the urban heat island (UHI) effect, the increased local temperature in highly built areas due to differences from the natural environment in the absorption and reflection of solar energy at the surface. Previous research has displayed the value of large urban parks in controlling temperature in cities, but less is known about the effect of smaller green spaces. In order to investigate how vegetation and construction levels impact UHI severity, Rotem-Mindali et al. (2015) used ten years of remotely sensed data from two NASA satellites to analyze the relationship between different land uses and land surface temperature (LST) in Tel Aviv, Israel. The authors compiled information on local LST and Normalized Difference Vegetation Index (NDVI), a measure of vegetation cover, and used it to search for a correlation between land use type and mean surface temperature for summer nights. In their analysis, they found an enormous difference of 13°C in mean temperature among different locations in Tel Aviv. There was a strong correlation between land use type and LST, with the most vegetated regions experiencing much lower average temperatures than highly built regions. Continue reading

Occupational Health Hazards and Consequent Economic Losses Due to Workplace Heat Exposure

by Amelia Hamiter

Kjellstrom et al. (2015) study how warming temperatures due to climate change may create an occupational health hazard in tropical and subtropical countries that have a significant workforce employed in jobs in hot environments, such as physical jobs which must be done outdoors or in indoor spaces such as some factories that lack efficient cooling systems. (Air conditioning in urban areas is contested, since on a large urban scale it can increase heating of outdoor air, and because of its electricity demands. Thus indoor workplaces in some regions lack sustainable temperature control systems.) This problem is exacerbated by the high humidity of these countries, which reduces the effectiveness of sweating in cooling the body. To avoid excessive heat stress, workers must not work during the hottest hours of the day, which increase in the hottest days of the year. Many of the countries affected by this are low- to middle-income, and this issue can have an impact on their respective gross domestic products (GDPs). Preventative actions include development of coolant systems where possible as well as occupational health advisories, adjusted work hours, and other changes such as increased access to drinking water and education about symptoms of heat strain and heat stroke in the workplace. However, these strategies are limited, and also hold little hope for cutting economic losses. Global action against climate change is the most effective action to take against this situation. Continue reading

Occupational Health Hazards and Consequent Economic Losses Due to Workplace Heat Exposure

by Amelia Hamiter

Kjellstrom et al. (2015) study how warming temperatures due to climate change may create an occupational health hazard in tropical and subtropical countries that have a significant workforce employed in jobs in hot environments, such as physical jobs which must be done outdoors or in indoor spaces such as some factories that lack efficient cooling systems. (Air conditioning in urban areas is contested, since on a large urban scale it can increase heating of outdoor air, and because of its electricity demands. Thus indoor workplaces in some regions lack sustainable temperature control systems.) This problem is exacerbated by the high humidity of these countries, which reduces the effectiveness of sweating in cooling the body. To avoid excessive heat stress, workers must not work during the hottest hours of the day, which increase in the hottest days of the year. Many of the countries affected by this are low- to middle-income, and this issue can have an impact on their respective gross domestic products (GDPs). Preventative actions include development of coolant systems where possible as well as occupational health advisories, adjusted work hours, and other changes such as increased access to drinking water and education about symptoms of heat strain and heat stroke in the workplace. However, these strategies are limited, and also hold little hope for cutting economic losses. Global action against climate change is the most effective action to take against this situation. Continue reading