How a Crucial Tropical Forest is Responding to Climate Change

by Pushan Hinduja

How are Mangrove forests throughout tropical areas of the world responding to the rising sea levels attributed to climate change? Daniel M. Alongi, of the Australian Institute of Marine Sciences, analyzed historic responses to changes in sea levels in Mangrove forests as well as current data to determine how well these forests are reacting to the climate crisis (Alongi 2015). Mangrove forests tend to occupy the border between land and sea in low latitudes, making them especially susceptible to the effects of climate change. Fortunately for mangroves, they have an outstanding ecological stability, in part due to their large subterranean storage capabilities. However, despite responses to develop resilience to environmental disturbances, mangrove forests are still suffering. In terms of human impact, mangrove forests are being deforested at a rate of 1-2% per year, leaving only about a century before these forests disappear entirely. Mangroves are crucial to the environment; they serve as breeding and nursery grounds for fish, birds and other animals, prevent erosion and damage from natural disasters like tsunamis, serve as a renewable source of wood for fuel, and are key components in filtering ocean contaminants. Continue reading

Two Types of Science, One Study of Ocean Acidification

by Weronika Konwent

Ocean acidification is predicted to increase as global warming accelerates, affecting marine habitats and especially coastal areas experiencing episodic upwelling, such as the California Current Large Marine Ecosystem (CCLME). Hofmann et al. (2014) are studying this particular habitat due to its wide variety of conditions and its particular susceptibility to rapid environmental change, To do this, they are using data collected by the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) to pair oceanographic and biological data to create a more thorough understanding of genetic variability within key species populations, and how this can affect adaptation to the conditions caused by climate change. Using the biological data to measure responses of sea creatures to oceanographic factors that are affected by climate change, Hofman et al (2014) hope to plot the future survival of CCLME species. Continue reading