by Caroline Vurlumis
The Amazon rainforest is the most extensive tropical forest worldwide containing the largest amount of plant and animal diversity. For years there has been deforestation to create agriculture and cattle pasture which greatly harms biodiversity and causes homogenization in bacterial communities. Rodrigues et al. (2013) tested the impacts of soil microbial biodiversity when land is converted from forest to agriculture. Using transects from forest and pasture, the authors took soil samples of each to test local (alpha) diversity and differentiation (beta) diversity by concentrations of taxonomy and phylogeny. The results showed an increase in alpha diversity and decrease in beta diversity indicating a significant difference in bacterial communities when conversion occurs. There was significant loss in endemic species diversity and an increase of homogenization in the soil which poses a higher risk for net loss of biodiversity in the future. As a result of this study the authors argue that microbial biodiversity loss should be strongly considered when engaging in land conversion due to its important role in tropical ecosystems. Continue reading