Effects of Ant- Fruit Interactions Deforestation

by Maithili Joshi

Biodiversity within an ecosystem has mutualistic and symbiotic relationships within that environment. The results of deforestation can be dramatic to these relationships, especially in cases with frugivores. The relationships between frugivores and fallen fruit are what help disperse seeds across the forest floor, which also helps the process of germination. In this study, Bieber et al. (2014) analyzed the mutualistic interactions between ants and fallen fruit in São Paulo State, SE Brazil. The scientists were examining the difference in interactions between disturbed and undisturbed forests. They compared the richness of ants at each fruit, species density per station, frequency of specific ant groups, frequency of fruit and pulp removal, and distance of fruit removal. The study was conducted using four disturbed forests, and four undisturbed forest areas. In these areas, there were thirty sampling stations with synthetic fruit placed 10 m apart from each other to ensure independent discoveries. The fruit were placed on a white sheet of paper within a wire cage to ensure that vertebrates did not access the fruit at each sampling station. Continue reading

Analyzing the Vulnerability of Rainforest Birds to Deforestation

by Maithili Joshi

In South East Queensland, Australia Pavlacky et al.(2014) conducted a study on the vulnerability of birds, rainforest ecosystems, and the biological impacts in response to deforestation in local and regional areas. The central idea is the to investigate the life history and forest structure to rank the vulnerability of avian species, while also looking at species loss along different kinds of forest structure and landscape change. The objectives are evaluating the effects of life history traits on the patch occupancy and vulnerability of rainforest birds, determining the relative effects of stand, landscape, and patch structure on species richness, and evaluating the relative contributions of deforestation and fragmentation to species richness. Continue reading

Allometric and Structural Changes Reduce Carbon Storage in Forest Fragments

by Stephen Johnson

Contrary to the popular image of deforestation as a clear-cut resulting in the absolute destruction of forests, most deforestation in the tropics takes place piecemeal. As forest is logged or converted to agriculture, patches are often left standing, resulting in a fragmented system of forest patches in a mosaic composed primarily of agriculture. Forests in tropical areas are increasingly highly fragmented, which has significant impacts on biodiversity and environmental conditions within the fragments. However, little is known about the impact of fragmentation on the ability of the forest to store carbon. In an ever-more-fragmented, ever-more-carbon-saturated world, understanding how these remnant forests sequester carbon is critical. Osuri et al. (2014) examined the relationship between rainfall, fragmentation, and carbon storage in fragments and continuous forest in the Western Ghats of southern India. Using linear mixed models and regressions, they found that fragmented forests stored almost 40% less carbon than continuous forests, as a result of trees that were shorter, had less dense wood, and were shorter for a given trunk diameter. Fragmented forests also relied more on large trees to store carbon, while displaying signs of transitioning to a community of less-dense, lower-carbon species. Continue reading