How Agricultural Intensification can Contribute to a more Favorable Agricultural Climate

by Caroline Hays

Food security is an ever growing concern in a world with an expanding population, an expanding demand for land-intensive meat production, and a finite amount of cropland. Crop productivity is a primary concern for food security and is largely affected by precipitation and temperature. Extreme temperatures caused by global warming and the subsequent climate change are a particular concern for crop productivity. In addition to global effects, local climate patterns are important for crop productivity. As it turns out, climate’s effects on crops are not a one way street: agricultural practices also exert their own influences on rainfall and temperature. Mueller et al. (2015) looked at this feedback loop in the US Midwest and found that cropland intensification has contributed to more desirable conditions for crops, leading to higher precipitation rates and more moderate extreme high temperatures. Continue reading

Influence of Extreme Weather Disasters on Global Cereal Production

by Coco Coyle

Increases in numbers and intensity of extreme weather disasters are linked to climate change and rising global temperatures. Agriculture is both a cause and a victim of climate change, and is susceptible to natural disasters and extreme weather disasters (EWDs). Lesk et al (2015) estimate global cereal production losses resulting from four major types of EWDs—extreme heat, droughts, extreme cold, and floods—in the period 1964–2007, analyze the underlying processes resulting in those losses, and identify several areas with potential for further study. They found that extreme heat disasters and droughts on average reduced national cereal production by 9–10%, while there was no significant drop in production from extreme cold and floods. Continue reading

Extreme Temperatures Increase the Incidence of Tuberculosis in Japan

by Allison Hu

Tuberculosis (TB) is a major global public health problem – it affects millions of people annually and ranks as the second leading cause of death from an infectious disease worldwide (World Health Organization (WHO) 2013) (Onozuka et al. 2014). The WHO estimated that there were 8.6 million new TB cases and 1.3 million TB deaths in 2012. The worldwide TB incidence rates peaked in 2004 and have decreased at a rate of less than 1 % per year since then. Thus, the overall worldwide burden continues to rise as a result of the rapid growth of the world population. TB is a leading cause of death in people in the most economically productive age groups. Furthermore, with growing concerns about global climate change, many studies have focused on associations between weather variability and the fluctuations of infectious diseases and have suggested that weather factors play an important role in their incidence, indicating the possibility of multiple functional pathways. Continue reading