Resilience or Decline of Species under Climate Change?

by Samantha Thompson

Species have widely been affected by changes in global climate but to what extent is uncertain, though predictions of species decline are often urgent. For example, one prominent analysis predicted that 15 to 37% of species would be endangered or extinct by 2050 (Moritz, 2013). Another predicts more than a 50% loss of climatic range by 2080 for some 57% of widespread species of plants and 34% of animals (Moritz, 2013). Montane taxa are expected to lose range area as they shift northward with warming (Moritz, 2013). Craig Moritz et al. point out that fossil records suggests that most species have persisted through past climate change, whereas forecasts of future impacts predict large-scale range reduction and extinction. Moritz et. al. explore the apparent contradiction between observed past and predicted future species responses summarizing salient concepts and theories and by reviewing broad-scale predictions of future response and evidence from paleontological and phylogeographic studies of past responses at millennial or greater time scales. Bringing the two ideas together, the authors consider evidence for species responses to recent twentieth century climate changes and place them in a management context. Continue reading

Resilience of Marine Turtle Regional Management Units to Climate Change

by Samantha Thompson

Scientists are searching for ways to avoid losing biodiversity to global warming. One way is by enhancing species resilience to environmental change. Resilience is the ability of an ecosystem or species to maintain key functions and processes in the face of stresses or pressures, either by resisting and/or adapting to change. Fuentes explored the resilience of 58 marine regional turtle management units (RMUs) to climate change, including all species of marine turtles worldwide. Using expert opinions from 33 different IUCN-SSC Marine Turtle Specialist Group respondents, the researchers were able to develop a Resilience Index. This was used in order to consider qualitative characteristics of RMUs such as population size, rookery vulnerability, and genetic diversity, and non climate related threats, such as fisheries, take, and coastal development. Through this information researchers were able to identify the world’s 13 least resilient marine turtle RMUs to climate change. Continue reading